Novel Chalcopyrites\# for Advanced Photoelectrochemical Water-Splitting

Nicolas Gaillard
November 14th 2017
HydroGEN Projects Kick-Off Meeting

\#: CuX(S,Se) material class, typically identified by its most popular alloy Cu(In,Ga)Se\textsubscript{2}
HydroGEN Kick-Off Meeting

Novel Chalcopryrites for Advanced Photoelectrochemical Water-Splitting
- Lead PI: Nicolas Gaillard (University of Hawaii)
- Co-PIs: Clemens Heske (UNLV)
 Thomas Jaramillo (Stanford)

Project Vision
Strengthen theory, synthesis and advanced characterization “loop” to accelerate development of efficient materials for PEC H₂ production.

Project Impact
Innovative technologies to synthesize and integrate existing or exploratory CIGS into low-cost PEC devices. These techniques could be extended to other material classes.
Technical background

1. CIGS can generate high photocurrent density
 - AM1.5a: 28 mA/cm²

2. Low-cost processes available for CIGS
 - PV module cost $100-150/m²

3. CIGS are bandgap (color) tunable
 - Adapted from Contreras et al., 37th IEEE PVSC (2011)

4. Demonstrated water splitting with co-planar CIGS
 - 4% STH efficiency

Solar cell vs. Photoelectrode
Our goal: combine a **new wide bandgap** \((E_g) \) **chalcopyrite** photo-electrode with an **existing narrow bandgap PV driver** to create a tandem PEC device with \(\text{STH}>10\% \).

Technical background

Fundamental steps in PEC \(\text{H}_2 \) production

- **#1**: light absorp. and electron generation (**photocurrent**)
- **#2**: charge separation with junction (**voltage**)
- **#3**: \(\text{H}_2 \) evolution (**catalysis and durability**)

This project goal: \(\text{Cu(In,X)}(\text{S,Se})_2 \)

Existing PV drivers: \(\text{CuInGaSe}_2, \text{Si}, \text{Perovskites} \)
Innovation and Objectives

Project history
- UH/UNLV/Stanford + NREL/LLNL funded by EERE (2014) to identify promising chalcopyrites for PEC H₂.
- New absorbers, interfaces and surface protection schemes were evaluated.
- Issues identified with these systems will be addressed in this new project.

Partnerships
- UH (N. Gaillard)
 → Absorbers and junctions synthesis
- UNLV (C. Heske)
 → Bulk/sub-surface/surface characterization
- Stanford (T. Jaramillo)
 → Surface catalysis and corrosion protection

Absorber (photocurrent)
Cu(In,Ga)S₂
Bandgap tunable chalcopyrite electrodes (J>10mA/cm²)

Interface (voltage)
Energetics at the CdS/CIGS₂ interface

Surface (catalysis and durability)
350 hrs at 8 mA/cm² with MoS₂

Partnerships
- UH (N. Gaillard)
 → Absorbers and junctions synthesis
- UNLV (C. Heske)
 → Bulk/sub-surface/surface characterization
- Stanford (T. Jaramillo)
 → Surface catalysis and corrosion protection
Innovation and Objectives

Barriers

Efficiency: the photo-voltage generated by wide E_g CIGS is too low.
→ Identify alternative buffers with tunable energetics (ZnOS, ZnMgO).

Durability: coating a 20 nm thick MoS$_2$ film on rough CIGS is challenging.
→ Improve MoS$_2$ coverage with ALD techniques.

Proposed targets

<table>
<thead>
<tr>
<th>Metric</th>
<th>State of the Art</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-voltage</td>
<td>0.7-0.8 V</td>
<td>> 1 V</td>
</tr>
<tr>
<td>STH efficiency</td>
<td>4%</td>
<td>>10%</td>
</tr>
<tr>
<td>Durability</td>
<td>350 hrs</td>
<td>>1,000 hrs</td>
</tr>
</tbody>
</table>

Modeling of band offsets (LLNL)

Durability of MoS$_2$/Si (Stanford)

MoS$_2$/Si in H$_2$SO$_4$

1,500 hrs @ 11.5 mA/cm2
Technology Innovation

1. “Printing” techniques to synthesize chalcopyrites
 - Lower manufacturing costs and enable synthesis of new chalcopyrites (e.g. Cu(B,In)Se₂)

2) Innovative tandem device integration schemes
 - “Transferable” PEC onto fully integrated PV cell to solve process compatibility issues
Effective Leveraging of the EMN Resource Nodes

- Computational Materials Diagnostics and Optimization of PEC Devices (T. Ogitsu).

Example of past LLNL/UH work:
\(\text{CuGa}(S,\text{Se})_2 \)

- color can be tuned with
\(S/\text{Se} \) ratio.

→ Each round of testing improves the accuracy of the theoretical model.
Effective Leveraging of the EMN Resource Nodes

- **High-Throughput Thin Film Combinatorial Capabilities (A. Zakutayev)**
 - Rapid screening of a graded buffer (>40 different chemical compositions) on a single CIGS sample

- **I-III-VI Compound Semiconductors for Water-Splitting (K. Zhu)**
 - High purity absorbers for top PEC (1.8 eV CuGa₃Se₅) and bottom PV driver (1.1 eV CuInGaSe₂)

- **Corrosion Analysis of Materials (T. Deutsch)**
 - Support development of surface passivation and validate device durability/efficiency